What is POST-TRAUMATIC EPILEPSY? What does POST-TRAUMATIC EPILEPSY mean?



✪✪✪✪✪ http://www.theaudiopedia.com ✪✪✪✪✪

What is POST-TRAUMATIC EPILEPSY? What does POST-TRAUMATIC EPILEPSY mean? POST-TRAUMATIC EPILEPSY meaning – POST-TRAUMATIC EPILEPSY definition – POST-TRAUMATIC EPILEPSY explanation.

Source: Wikipedia.org article, adapted under https://creativecommons.org/licenses/by-sa/3.0/ license.

SUBSCRIBE to our Google Earth flights channel – https://www.youtube.com/channel/UC6UuCPh7GrXznZi0Hz2YQnQ

Post-traumatic epilepsy (PTE) is a form of epilepsy that results from brain damage caused by physical trauma to the brain (traumatic brain injury, abbreviated TBI). A person with PTE suffers repeated post-traumatic seizures (PTS, seizures that result from TBI) more than a week after the initial injury. PTE is estimated to constitute 5% of all cases of epilepsy and over 20% of cases of symptomatic epilepsy (in which seizures are caused by an identifiable organic brain condition).

It is not known how to predict who will develop epilepsy after TBI and who will not. However, the likelihood that a person will develop PTE is influenced by the severity and type of injury; for example penetrating injuries and those that involve bleeding within the brain confer a higher risk. The onset of PTE can occur within a short time of the physical trauma that causes it, or months or years after. People with head trauma may remain at a higher risk for seizures than the general population even decades after the injury. PTE may be caused by several biochemical processes that occur in the brain after trauma, including overexcitation of brain cells and damage to brain tissues by free radicals.

Diagnostic measures include electroencephalography (EEG) and brain imaging techniques such as magnetic resonance imaging, but these are not totally reliable. Antiepileptic drugs do not prevent the development of PTE after head injury, but may be used to treat the condition if it does occur. When medication does not work to control the seizures, surgery may be needed. Modern surgical techniques for PTE have their roots in the 19th century, but trepanation (cutting a hole in the skull) may have been used for the condition in ancient cultures.

It is not clear why some patients get PTE while others with very similar injuries do not. However, possible risk factors have been identified, including severity and type of injury, presence of early seizures, and genetic factors.

To be diagnosed with PTE, a person must have a history of head trauma and no history of seizures prior to the injury. Witnessing a seizure is the most effective way to diagnose PTE. Electroencephalography (EEG) is a tool used to diagnose a seizure disorder, but a large portion of people with PTE may not have the abnormal “epileptiform” EEG findings indicative of epilepsy. In one study, about a fifth of people who had normal EEGs three months after an injury later developed PTE. However, while EEG is not useful for predicting who will develop PTE, it can be useful to localize the epileptic focus, to determine severity, and to predict whether a person will suffer more seizures if they stop taking antiepileptic medications.

Magnetic resonance imaging (MRI) is performed in people with PTE, and C-T scanning can be used to detect brain lesions if MRI is unavailable. However, it is frequently not possible to detect the epileptic focus using neuroimaging.

For a diagnosis of PTE, seizures must not be attributable to another obvious cause. Seizures that occur after head injury are not necessarily due to epilepsy or even to the head trauma. Like anyone else, TBI survivors may suffer seizures due to factors including imbalances of fluid or electrolytes, epilepsy from other causes, hypoxia (insufficient oxygen), and ischemia (insufficient blood flow to the brain). Withdrawal from alcohol is another potential cause of seizures. Thus these factors must be ruled out as causes of seizures in people with head injury before a diagnosis of PTE can be made.


Source: Youtube